松果体細胞は光受容性を失い,内 分泌腺に変化してメラトニンを血中に分泌するが,松 果体の分泌機


魚類における血中メラトニン濃度が日周リズムを示すか否かを明らかにするために,ウグイ,オイカワ,ナマズ,サクラマス,ヒラメ,マダイ,カンパチ,ブリを用いて,明暗条件下における血中メラトニン濃度を測定した。その結果,どの種においても血中メラトニン濃度は暗期に高く,明期に低い日周リズムを示すことが判明した。また,サクラマスとマダイの血中メラトニン濃度におよぼす日長の影響について検討したところ,血中メラトニン濃度の高値持続時間は暗期の長さによって規定されることが明らかになった。これらの結果から,魚類の血中メラトニン濃度は魚種にかかわらず,暗期に高く,明期に低い日周リズムを示すことが明らかになった。


[PDF] 122. 松果体メラトニンによる網膜の光感受性抑制機構の解明 池上 啓介

キンギョの血中,松果体および眼球内メラトニンの動態について比較検討した。まず,眼球にメラトニンが存在することを高速液体クロマトグラフィーとラジオイムノアッセイの組み合わせにより確認した。次に,明暗条件下における血中メラトニン濃度,松果体および眼球内メラトニン含量を測定したところ,三者とも暗期に高く,明期に低い日周リズムを示すことがわかった。続いて,眼球除去,松果体除去実験を行った結果,血中メラトニン濃度の日周リズムは松果体が作り出していることが確認された。さらに,血中メラトニン濃度と眼球内メラトニン含量の日周リズムにおよぼす日長の影響を検討したところ,キンギョにおいてもメラトニンの高値持続時間は短日条件下の方が長日条件下よりも長いことがわかった。最後に,暗期の開始時から明期を延長して持続性の,また,暗期開始5時間後より急性の光照射(300,1,500lx)を行いその影響について検討した。その結果,持続性光照射により血中メラトニン濃度の日周リズムは失われたが,眼球内メラトニン含量の日周リズムは300lx照射群では振幅が小さくなったものの存続した。一方,急性光照射時には,血中メラトニン濃度は照射開始後直ちに減少し.低い値を維持した。眼球内メラトニン含量は,300lx照射群においては変化を示さなかったが,1,500lx照射群においては照射開始1時間後になってはじめて減少した。急性光照射時の血中メラトニン濃度の経時変化より計算された血中メラトニンの半減期は,300lx照射群においては11.0分,1,500lx照射群においては16.8分であった。以上の結果から,キンギョの松果体と眼球におけるメラトニン合成は互いに独立していること,血中メラトニン濃度の日周リズムは松果体が作り出していること,松果体のメラトニンリズムの方が眼球よりも光感受性が高いことが明らかになった。

環境要因がキンギョの血中メラトニン濃度の日周リズムにおよぼす影響について検討するために.季節,水温,および光周期の影響について調べた。まず,自然条件下で季節変化を調べたところ,明期の値は年間を通じて低かったが,暗期の値は季節変化を示し,6月,9月に高く,12月,3月に低い値を示すことが判明した。これらの変化は水温の変化と有意な相関を示したことから,実験的に水温が血中メラトニン濃度の日周リズムにおよぼす影響について,5,15,25℃と水温を変化させて調べた。その結果,光周期にかかわらず,暗期の血中メラトニン濃度は25℃>15℃>5℃の順になった。また,水温にかかわらず,血中メラトニン濃度の高値持続時間は暗期の長さによって規定されていることが判明した。これらの結果から,キンギョの血中メラトニン濃度の日周リズムは環境の光条件と水温の双方に影響を受けた季節変化を示すことが明らかになった。

このようにして睡眠覚醒などの概日リズムは明暗環境に同調できる。松果体の

理学研究科の寺北明久(てらきた あきひさ)教授と小柳光正(こやなぎ みつまさ)准教授らの研究グループは、魚類の松果体にある「光の波長(色)識別」と「生体リズムホルモンであるメラトニン分泌の光調節」にかかわる異なる2つの光受容タンパク質が、約3億年前に魚類の進化過程で起きた『ゲノムの二倍化』の後に分化した「双子」の関係であることを発見しました。
動物の光受容は、視覚(図Ⅰ)に関するものと、そうでないのもの=非視覚(図Ⅱ)に分類されます。今回の発見は、非視覚の光受容において、もっとも重要な分子である光受容タンパク質が遺伝子重複によって増え、進化の過程で異なる機能を獲得したことを初めて明らかにしました。ヒトを含めて動物が非視覚の光受容に関わる光受容タンパク質をたくさん持っている謎を解くカギとなる発見です。

この研究発表は下記のメディアで紹介されました。
◆9/23 産経WEST


理学研究科の寺北明久(てらきた あきひさ)教授と小柳光正(こやなぎ みつまさ)准教授らの研究グループは、魚類の松果体にある「光の波長(色)識別」と「生体リズムホルモンであるメラトニン分泌の光調節」にかかわる異なる2つの光受容タンパク質が、約3億年前に魚類の進化過程で起きた『ゲノムの二倍化』の後に分化した「双子」の関係であることを発見しました。
動物の光受容は、視覚(図Ⅰ)に関するものと、そうでないのもの=非視覚(図Ⅱ)に分類されます。今回の発見は、非視覚の光受容において、もっとも重要な分子である光受容タンパク質が遺伝子重複によって増え、進化の過程で異なる機能を獲得したことを初めて明らかにしました。ヒトを含めて動物が非視覚の光受容に関わる光受容タンパク質をたくさん持っている謎を解くカギとなる発見です。 動物における光受容のイメージ図
本内容は2015年9月15日(British Summer Time)に、イギリスの生物学専門誌であるBMC Biology(オンライン版)に掲載されました。

【雑誌名】
BMC Biology

【論文名】
Diversification of non-visual photopigment parapinopsin in spectral sensitivity for diverse pineal functions(非視覚の光受容タンパク質パラピノプシンの波長感受性における多様化は多様な松果体機能をもたらした)

【著 者】
Mitsumasa Koyanagi; Seiji Wada; Emi Kawano-Yamashita; Yuichiro Hara;
Shigehiro Kuraku; Shigeaki Kosaka; Koichi Kawakami; Satoshi Tamotsu;
Hisao Tsukamoto; Yoshinori Shichida; Akihisa Terakita

【掲載URL】
ヒトを含め動物は、複数の光受容タンパク質を持っています。ヒトの視覚に関わる光受容タンパク質の進化については、今から3000万年前に、赤色感受性の光受容タンパク質の遺伝子が遺伝子重複により増加した後、遺伝子変異により緑色感受性光受容タンパク質の遺伝子となったことが分かっています。一方、非視覚に関わる光受容タンパク質については、その遺伝子がどのような機能と関わっているのか、ほとんど分かっていません。
そこで、我々は魚類などの下等脊椎動物の松果体が、メラトニン分泌の光制御に加えて光の明暗や光の色を識別していることに注目し、モデル生物である小型魚のゼブラフィッシュにおいて、松果体のどの光受容タンパク質がメラトニン分泌の光制御に関係しているのかを調べました。分子生物学的手法、遺伝子導入個体の利用、組織化学的解析により、松果体に特異的に存在する新規光受容タンパク質の1つが、メラトニン分泌の光制御を担っていることを発見しました。この光受容タンパク質は、既に私たちのグループが同定していた松果体にある光の色識別に関わる光受容タンパク質遺伝子(パラピノプシン1、PP1)と「双子」の関係にあったため、PP2と名付けました。
PP1とPP2について、さまざまな魚類のゲノムを調べたところ、ガーという古代魚は1つのパラピノプシンしか持たないことがわかり、遺伝子の並びなどの解析と合わせて、これら2つの遺伝子はおよそ3億年前に魚類で起きた『ゲノムの二倍化』により「双子」として誕生したことが分かりました。さらに、それらの遺伝子からできるタンパク質を解析したところ、PP1が紫外(UV)光感受性であるのに対して、PP2は青色感受性であることを見出しました。すなわち、もともと全く同じだった双子の光受容タンパク質の1つは、進化の過程で異なる色の光を受容できるように変化し、それぞれが色識別とメラトニン分泌の光制御という全く異なる生理機能に関わるようになったことが明らかになりました。 ヒトは9つの光受容タンパク質の遺伝子を持ち、そのうち5つは非視覚の機能に働いていると推測されています。進化の過程で遺伝子の数が増えることにより多様化してきた非視覚に関わる光受容タンパク質は、異なる色の光をキャッチするなど、それぞれ異なる分子特性を持っています。しかし、それらの違いがどのような機能の違いを生んでいるのかは未だによく分かっていません。今回の発見は、光受容タンパク質がキャッチする光の色がUV光から青色光に変わったことが、メラトニン分泌の光制御という機能にとって重要であることを示しており、非視覚の光受容タンパク質の分子の性質と機能との関連を示す初めての例と言えます。 本研究は理化学研究所、国立遺伝学研究所、奈良女子大学、京都大学の協力と下記の科研費による資金援助を得て実施されました。

◆『単離細胞を用いた非視覚型ロドプシン類の機能多様性に関する分子生理学的解析』
2011年度~2014年度
◆『ロドプシン類の多様性とその協調的機能発現の分子生理学的解析』
2007年度~2010年度
◆『松果体で行われる色弁別の生理的役割の解明』
2010年度~2013年度
◆『視覚以外で機能するロドプシン類の分子レベルおよび神経レベルの機能解析』
2008年度~2009年度

松果体とメラトニン (Neurological Surgery 脳神経外科 23巻10号)

キンギョにおけるメラトニンリズムが生物時計による調節を受けているか否かを明らかにするため,恒常条件下でサーカディアンリズム(周期が約24時間の自由継続リズム)を示すかどうか調べた。キンギョにおける血中メラトニン濃度は,恒暗条件下では3日間サーカディアンリズムを示し,明暗条件下の暗期に相当する時刻に高い値を,明期に相当する時刻に低い値を示した。一方,眼球内メラトニン含量は2日間はサーカディアンリズムを示したが,3日目にはリズムは失われた。恒明条件下においては,血中メラトニン濃度は低い値を保ち,変化を示さなかったが,眼球内メラトニン含量は,恒暗条件下に比べて振幅は小さかったものの,サーカディアンリズムを示した。次に松果体の灌流培養を行ったところ,明暗条件下,および逆転した明暗条件下では,メラトニン分泌は暗期に高く,明期に低い日周リズムを示した。恒暗条件下では,周期が23.6ないし24.9時間のサーカディアンリズムを示したが,恒明条件下ではメラトニン分泌は抑制され,リズムは失われた。最後に培養時刻と光条件がキンギョ眼杯標本からのメラトニン分泌量と眼杯におけるメラトニン含量におよぼす影響を検討したところ,明期(1130hr)に眼杯標本を作成し,1200-1500hrの間培養した場合には,メラトニン放出量,メラトニン含量ともに明条件群と暗条件群の間に差は認められなかった。暗期に入る直前(1730hr)に眼杯標本を作成し,1800-2100hrの間培養した場合には,メラトニン放出量,メラトニン含量ともに,暗条件群のほうが明条件群よりも高い値を示した。また,これらの実験の明条件群,暗条件群それぞれにおいて,1800-2100hr培養群の方が,1200-1500hr培養群よりも高い値を示し,培養時刻が眼杯におけるメラトニン産生に影響をおよぼすことが判明した。これらの結果から,キンギョにおけるメラトニンリズムは環境要因のみならず内因性の生物時計による制御も受けていることが明らかになった。

本内容は2015年9月15日(British Summer Time)に、イギリスの生物学専門誌であるBMC Biology(オンライン版)に掲載されました。

【雑誌名】
BMC Biology

【論文名】
Diversification of non-visual photopigment parapinopsin in spectral sensitivity for diverse pineal functions(非視覚の光受容タンパク質パラピノプシンの波長感受性における多様化は多様な松果体機能をもたらした)

【著 者】
Mitsumasa Koyanagi; Seiji Wada; Emi Kawano-Yamashita; Yuichiro Hara;
Shigehiro Kuraku; Shigeaki Kosaka; Koichi Kawakami; Satoshi Tamotsu;
Hisao Tsukamoto; Yoshinori Shichida; Akihisa Terakita

【掲載URL】

松果体ホルモンメラトニンはミトコンドリア機能制御を通して自然免疫細胞の活性化制御を行う

キンギョ脳内メラトニン受容体の結合部位数は明期に多く暗期に少ない日周リズムを示した。松果体除去あるいは恒明条件下での飼育によって血中メラトニン濃度の日周リズムを消失させると、受容体数の日周リズムも消失したことから、受容体数の日周リズムは血中メラトニン濃度の日周リズムによって駆動されていると結論された。

各種ヌクレオチド類はキンギョ脳内メラトニン受容体の特異的結合を用量依存的に減少させた。その効果はGTPS>GTP>GDP>GMP=ATP>cGMPの順であった。また各種無機塩類の影響について調べたところ、MgCl2(5mM)は特異的結合を増加させたが、高濃度の各種無機塩類は特異的結合を減少させた。その効果はCaCl2>LiCl>MgCl2>NaCl>Choline chloride=KClの順であった。これらの結果から、キンギョの脳内メラトニン受容体はG蛋白質と共役していることが示された。


メラトニン | 看護師の用語辞典 | 看護roo![カンゴルー]

本研究は理化学研究所、国立遺伝学研究所、奈良女子大学、京都大学の協力と下記の科研費による資金援助を得て実施されました。

◆『単離細胞を用いた非視覚型ロドプシン類の機能多様性に関する分子生理学的解析』
2011年度~2014年度
◆『ロドプシン類の多様性とその協調的機能発現の分子生理学的解析』
2007年度~2010年度
◆『松果体で行われる色弁別の生理的役割の解明』
2010年度~2013年度
◆『視覚以外で機能するロドプシン類の分子レベルおよび神経レベルの機能解析』
2008年度~2009年度

睡眠と覚醒のメカニズム ~「松果体」と「メラトニン」の作用 · 1

メラトニン受容体の分布と性状を2-[125I]iodomelatoninをリガンドとしたラジオレセプターアッセイにより調べたところ、特異的結合は脳と網膜で高く、その結合は迅速、安定、可逆的、飽和可能であることが判明した。脳内分布を調べたところ、密度は視蓋-視床>視床下部>終脳>小脳>延髄の順に高かった。この結果、メラトニン受容体は脳内の様々な神経核や網膜に存在すること、受容体の脳内分布は哺乳類とは大きく異なることが示唆された。特に視蓋に高濃度に受容体が分布することから、視覚情報の統合にメラトニンが重要な役割を果たしていることが推察された。

歯の噛み合わせを正すことで、松果体からのメラトニンの分泌を促し

キンギョを恒暗条件下におくと血中メラトニン濃度および眼球内メラトニン含量は概日周期を示した。また培養松果体も、恒暗条件下で概日周期を示した。これらの結果から、キンギョのメラトニンリズムは環境要因のみならず内因性の生物時計による制御も受けていることが明らかになった。

朝、太陽の光を浴びると脳の奥にある松果体(しょうかたい)へ約14時間後に「メラトニン」というホルモンを

メラトニンの生理作用の解明にはメラトニンの投与が必須である。これまで魚類に対してメラトニン投与は数多く行われてきたが、投与後のメラトニンの動態については全く知見がない。そこで腹腔内注射と経口投与(いずれも 1mg/体重1kg)によりメラトニンをキンギョに投与し、血中メラトニン濃度の経時変化を調べところ、いずれの方法でも血中メラトニン濃度の日周リズムを再現できることが判明した。

脳松果体から分泌される中分子ペプチドホルモン・メラトニンの鼻から脳への薬物送達とその移行経路の解明

キンギョの血中メラトニン濃度は6月、9月に高く、12月、3月に低い明瞭な季節変化を示した。このため環境条件を変えて調べたところ、血中濃度は水温の高低にかかわらず暗期に高い日周リズムを示したものの、低水温下では暗期の濃度は大きく低下することが判明した。この結果、血中メラトニン濃度は日長と水温の双方に影響を受けるものと結論された。

実験用マウスはメラトニンを合成できないので合成できるようにした

キンギョについてさらに詳しくメラトニンの日周リズムを調べたところ、血中メラトニン濃度、松果体および眼球内メラトニン含量も同様な日周リズムを示すこと、血中濃度の日周リズムは松果体に依存していること、松果体と眼球におけるメラトニン合成は互いに独立しており松果体では眼球よりも低照度の光で抑制されることが判明した。

メラトニンは、脳内にある松果体という場所から夜のみに分泌されるホルモンの一種で、主に睡眠に関与していることがわかっています。

以上、本論文は、魚類におけるメラトニンの日周リズム、合成・代謝機構、受容体による情報伝達機構ならびに投与方法などについて総合的に明らかにしたもので、学術上、応用上寄与するところが大きい。よって審査委員一同は、本論文が博士(農学)の学位論文として価値あるものと認めた。

[PDF] 副腎皮質ホルモンが魚類松果体でのメラトニン産生に与

メラトニン(N-acetyl-5-methoxytryptamine)は脊椎動物の松果体や眼球で暗期に合成されることから、環境の明暗情報を伝達するホルモンと考えられている。メラトニンは、哺乳類においては繁殖期の決定や概日周期の同調に重要な役割を果たしているが、魚類における知見は乏しい。そこで本研究は、魚類におけるメラトニンの動態、合成・代謝機構、さらにメラトニン受容体による情報伝達系までを総合的に明らかにすることを目的としている。概要は以下の通りである。

この松果体から睡眠を制御している2つのホルモンが分泌されます。 それは、メラトニンとセロトニンです。 1.メラトニン

松果体(しょうかたい)から分泌されるホルモン。魚類や両生類に始まり、鳥類、齧歯(げっし)類、ヒトを含めた霊長類に至るまで多くの動物で産生され、繁殖や渡り鳥の飛来などの季節性リズムや、日々の睡眠や体温、ホルモン分泌などの概日リズム(サーカディアンリズム)の調節に関わっている。

脳の松果体から分泌されるホルモンです。 目に光が当たっている間は分泌量が少なく、光が少なくなると分泌量が増えます。

以上,本研究においては,魚類におけるメラトニン合成の制御機構,メラトニン受容体による情報伝達機構,メラトニンの代謝系,ならびにメラトニン投与法などについて総合的に検討した。これらの結果は,魚類においてもメラトニンが,季節繁殖などの年周リズムや,遊泳活動,摂餌活動などの日周リズムの調節に重要な役割を果たしていることを強く示唆している。本研究で明らかになった結果は,魚類におけるメラトニンの生理作用をさらに詳しく解明するために重要な基礎的知見となるものと思われる。

メラトニンとは眠りを誘う睡眠ホルモンの一種で、脳内の松果体という器官から分泌されています。

これまでに魚類に対するメラトニン投与は数多く行われてきたが,投与時のメラトニン動態については全く報告がない。そこで,腹腔内注射と経口投与によりメラトニンをキンギョに投与し,血中メラトニン濃度の経時変化を調べた。メラトニンを体重1kgあたり1mg腹腔内注射したところ,投与後直ちに血中メラトニン濃度は上昇し,1時間後に最大値(425.9±129.9ng/ml)を示した後,徐々に減少し,24時間後には投与前とほぼ同じ値に戻った。血中メラトニンの半減期は64.2分であった。また,メラトニン含有飼料を作成し,体重1kgあたり1mg経口投与したところ,投与1時間後に最大値(1607±599pg/ml)を示した後,徐々に減少し,6時間後には投与前とほぼ同じ値に戻った。これらの結果から,メラトニンは腹腔内注射のみならず経口的に投与することも可能であり,血中メラトニン濃度も上昇することが明らかにされた。今後,メラトニンの経口投与による魚類の生理機能制御技術が開発されることが期待される。

メラトニンは、脳にある松果体から周期的に分泌されるホルモンです。血液中のメラトニン濃度は、日中は低く、夕方頃に.

メラトニン(Melatonin, N-acetyl-5-methoxytryptamine)はその大部分が脳内の松果体で産生されるホルモンです。メラトニンは必須アミノ酸のトリプトファンを原料(基質)として合成されます(図)。その過程で、セロトニンをN-アセチルセロトニンに変換するN-アセチルトランスフェラーゼ(NAT)の活性が体内時計と外界の光の両者の調節を受けます。具体的には、体内時計(視床下部の視交叉上核:しこうさじょうかく)が発振する概日リズムのシグナルは室傍核(しつぼうかく)、上頸神経節を経て松果体に伝達されてNAT活性を「抑制」します。体内時計の活動は昼高夜低であるため、結果的に松果体でのメラトニンの産生量、すなわち血中メラトニン濃度は逆に昼間に低く夜間に高値を示す顕著な日内変動を示します。